A comparison of soil respiration, carbon balance and root carbon use efficiency in two managed Moso bamboo forests in subtropical China

نویسندگان

  • X. Tang
  • S. Fan
  • L. Qi
  • F. Guan
  • W. Su
  • M. Du
  • Lianghua Qi
  • Fengying Guan
چکیده

Moso bamboo forest (Phyllostachys heterocycla [Carr.] Mitford cv. Pubescens) is an important forest type in subtropical China and comprises an important pool in the global carbon cycle. Understanding the effects of the stand management, such as understory removal, on soil respiration (RS) will help to provide a more accurate estimation of carbon cycling and predict future climate change. The study aimed to compare RS and net ecosystem production (NEP) in two Moso bamboo forests managed by the application of herbicide (AH) and conventional hand-weeded (HW) treatment, and further examine their root carbon use efficiency (RCUE). Trenching and litter removal were used to partition the source components of RS and one-year field measurement was conducted. Maximum-minimum approach was used to estimate fine root production. NEP was determined by the balance between NPP of vegetation and heterotrophic respiration (RH) of soil. RCUE was calculated using an indirect method. In both stands, soil temperature and soil moisture at 5 cm depth were the main driving forces to the seasonality of RS. Annual RS was 31.6 t CO2 ha -1 for the stand AH and 33.9 t CO2 ha -1 for the stand HW, while net ecosystem production (NEP) were 21.9 and 21.1 t CO2 ha -1, respectively, indicating that the both Moso bamboo stands acted as carbon sinks in the scenarios of current climate change. The RCUE was 30.6% for the stand AH, which was significantly lower than that for the stand HW (58.8%). This result indicates that different stand management practices can alter RCUE and the assumed constant universal carbon use efficiency (CUE) of 50% is not appropriate in Moso bamboo forests. This study highlight the importance of partition the source components of RS and accurate estimation of RCUE in modelling carbon cycling in Moso bamboo forests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China

Moso bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) is an important timber substitute in China. Site specific stand management requires an accurate estimate of soil organic carbon (SOC) stock for maintaining stand productivity and understanding global carbon cycling. This study compared ordinary kriging (OK) and inverse distance weighting (IDW) approaches to study the spatial ...

متن کامل

Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China

Latitude is an important factor that influences the carbon stock of Moso bamboo (Phyllostachys pubescens) forests. Accurate estimation of the carbon stock of Moso bamboo forest can contribute to sufficient evaluation of forests in carbon sequestration worldwide. Nevertheless, the effect of latitude on the carbon stock of Moso bamboo remains unclear. In this study, a field survey with 36 plots o...

متن کامل

CO2 Emission Increases with Damage Severity in Moso Bamboo Forests Following a Winter Storm in Southern China

Despite the prevalence of disturbances in forests, the effects of disturbances on soil carbon processes are not fully understood. We examined the influences of a winter storm on soil respiration and labile soil organic carbon (SOC) of a Moso Bamboo (Phyllostachys heterocycle) plantation in the Wuyi Mountains in Southern China from May 2008 to May 2009. We sampled stands that were damaged at hea...

متن کامل

Lithological control on phytolith carbon sequestration in moso bamboo forests

Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg(-1)) > granite (1.6 g kg(-1)) > basalt (1....

متن کامل

Soil Organic Carbon in Particle Size and Density Fractionations under Four Forest Vegetation-Land Use Types in Subtropical China

Data on the effect of vegetation and land use type on soil organic carbon (SOC) distribution in particle-size and density fractions in the subtropical forest region in China will improve our understanding of the C sequestration potential of those different vegetation-land use types. We quantified SOC in particle size (coarse, medium and fine) and density fractions (light and heavy) under four t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016